

REDUCING MUNICIPAL ENERGY COSTS

Paul Markowitz, Community Energy Program Manager Efficiency Vermont

Workshop Overview

- Overall Process
- Buildings
- Streetlights
- Treatment plants
- Vehicle fleets

This workshop identifies opportunities and resources to help you.

OVERALL PROCESS

- Form a team
- Build support
- Compile data
- Set priorities for energy saving opportunities
- Decide on financing approach
- Undertake efficiency improvements and monitor results

Form a Team

- A group of 5-7 people with a diverse range of skills and experience
- 150 town energy committees or energy coordinators in VT
- Energy committees can play a key role in ushering the process
- See Vermont Energy and Climate Action Network (VECAN) website - <u>www.vecan.net</u>

Build Support

- Enlist the support of municipal officials
- Work in partnership with municipal officials to reduce municipal energy costs
- Communicate cost and savings information
- Make information available through a variety of forums

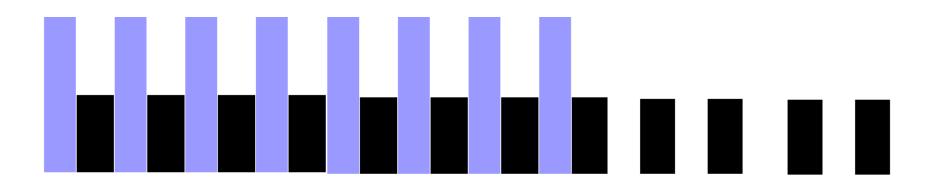
Compile Data

- Municipal energy costs often embedded in different departmental budgets
- Compile data on municipal energy bill
- Compile electrical and fuel bills for each municipal energy use
- EPA has a program to help municipalities benchmark their buildings and treatment facilities -<u>www.epa.gov/region1/eco/energy/ energy-</u> <u>challenge.html</u>

Identify and Set Priorities

- Conduct audits/assessments of energy saving opportunities
- Tap into appropriate expertise
- Efficiency Vermont can provide relevant technical assistance or provide access to assistance

Consider Financing/Funding Options


- Grants
- Efficiency incentives
- Budget and capital reserves
- Bonding
- Loans
- Performance contracting
- Tax-exempt lease purchase

Differentiating "funding" from "financing"

Financing

Align the period of payment with the period of the savings

Implement and Monitor

- Secure funding/financing
- Prepare necessary documentation/engineering
- Prepare RFP/bid
- Review bids/proposals and award contract
- Oversee project implementation
- Monitor results

BUILDINGS

Conduct Walk-Through Assessment

- Walk-through is a basic information-gathering tool
- Not a professional audit
- Provides basic information about energy saving opportunities
- Involves visual inspections of air leakage, insulation, heating equipment, and electrical uses

Conduct Professional Energy Audit

Includes:

- Visual inspection of insulation levels and possibly an infrared scan
- Blower door test -- (residential-style structures)
- Health and safety diagnostic testing
- Recommendations for electrical upgrades
- Audit report

STREETLIGHTS

Eliminate Unnecessary Streetlighting

Eliminating unnecessary lighting is most costeffective action

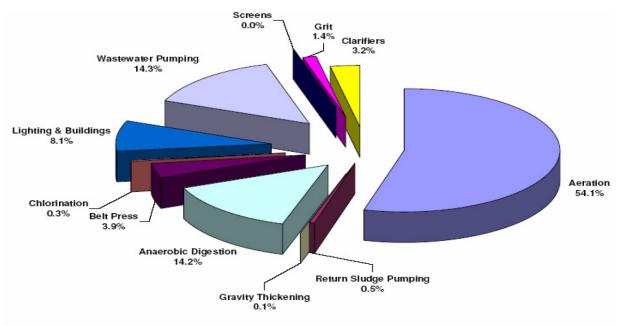
- Many lights were placed 20-30 years ago or longer
- No longer serving purpose they were intended for
- Ensure that lighting needs match lighting levels

Utilize LEDs

Technology Overview

- LEDs are the next advancement in technology
- Flat chips versus round lamps
- Higher efficiency
- Improved light quality
- Reduced maintenance

WASTEWATER TREATMENT PLANTS



Castleton Wastewater Treatment Facility

High Energy Use at Treatment Plants

Wastewater treatment plants can consume 50% or more of municipal electrical use

Electricity Requirements for Activated Sludge Wastewater

Derived from data from the Water Environment Energy Conservation Task Force Energy Conservation in Wastewater Treatment

Aeration Systems

- Aeration uses 30-70% of total energy at a treatment plant
- Some treatment plants use manual (or no) controls and don't closely monitor dissolved oxygen levels (O₂)
- Solution: Install automated controls -- include a sensor to detect O₂ levels
 - Achieve up to 50% savings payback of less than one year in many cases

Pumping

- Pumping used to move raw sewage from collection system to treatment plant
- Pumps are oversized at many facilities
 - □ Sized for maximum flow that occurs 1% of the time
- Solution: Install two pumps one more normal activity and another to kick-in when flow is high
 - Can achieve 25% electrical savings

Lifecycle Cost Analysis

- Many facilities are 30-40 years old and due for major facility upgrade
- Consider lifecycle cost analysis when making decisions about plant upgrades
 - Life cycle costs are the total capital and operational costs for the facility over its useful life

Transportation Efficiency

Municipal Operations

Municipal Fleet

School Operations

Employee Transportation Programs

Traffic Control Devices

Route Optimization

Supporting Infrastructure

Pedestrian / Bicycle Facilities

Public Transportation

Park and Ride Lots

Electric and Natural Gas Vehicle Fueling Stations

Eft