Why prepare for EVs in Vermont?

- EVs are the direction of the automotive industry
- Vermonters and tourists are buying EVs
- Motor gasoline is 25% of VT energy use
- Energy independence, plus health & environmental benefits

Impacts to the Electric Grid

NIGHT TIME CHARGING IS

Early Research shows:

- Impacts are negligible until penetration is high, 70% of charging is done at night
- Concentrations of PEVs on hot days could cause early aging of some electric distribution equipment
- Smart charging could eliminate impacts
- EVs could lower electric rates

Average residential annual cost and savings for house electric and vehicle gasoline with EV, PV, or both

			<u>ICE</u>		w EV, EVSE		<u>w PV</u>		<u>PV</u>	Public Service Department assumptions
Gas \$		\$	2,865	\$	1,962	\$	2,865	\$	1,962	2 Corollas, 12,000mi/yr, 31 mi/gal, \$3.70 mi/gal
EV elec \$			na		378		na		378	replace 1 car w/ a Leaf, 7,560mi/yr
House elec \$			1,011		1,011		30		408	house avg 6876kwh/yr, 4kW PV
total \$		\$	3,875	\$	3,351	\$	2,894	\$	2,748	\$.15/kWh; \$.20 solar adder
	\$ saved	\$	-	\$	524	\$	981	\$	1,128	
GHG house			1,031		1,031		296		296	ghg in lbs
GHG cars			15,186		10,788		15,186		10,788	Corolla .63273lb/mi, Leaf .0.051lb/mi
total GHG			16,217		11,819		15,481		11,083	
	GHG saved		-		4,398		736		5,134	lbs/year
Purchase/Install costs		\$	-	\$	39,200	\$	20,000	\$	59,200	Level 2 charger; \$5/W PV

(3,140)

\$ 48,560

\$ 16,860

(10,640) EV: \$7,500; PV: \$.55/W, 30% fed tax credit

(7,500)

\$ 31,700

Very conservative estimates of EV usage

Leaf is used for 30 mi commute, 5 day/wk, 48 wk/yr, plus 30 mi additional travel each month

Leaf is only charged at home

Incentives

EVs charging in at night could charge at an off peak electric rate

Total costs

EVSE Siting

Public Service Department

Through Traffic

> Rest stops Fueling stations

- ✓ Interval every 30miles
- ✓ Level Fast Charge will evolve
- ✓ Layover time up to 20 min.
- Fees Yes

Tourists

Tourist sites Lodging

- ✓ Interval per # parking spaces
- Level 2
- ✓ Layover time up to 4 hours
- ✓ Fees consider

Vermonters

- Home (70%)
- Businesses
- Towns

- ✓ Interval per # parking spaces
- ✓ Level 2
- ✓ Layover time up to 4 hours
- ✓ Fees yes

Consider – amenities, parking ordinances, private &/or public funding EVSE installation & maintenance costs